
Kurt Gutzmann
Nervewire Inc.

Access Control and
Session Management in
the HTTP Environment

A role-based access-control model is stored as LDAP

objects in a security architecture that has been fielded in

several implementations.

As the only ubiquitous public data
network, the Internet offers busi-
ness partners a communications

channel that previously existed only in
unique situations with private, special-
purpose networks. Well-publicized secu-
rity risks, however, have limited the
deployment of business-to-business
extranets, which typically use the Inter-
net’s public data network infrastructure.
These risks extend behind firewalls to
intranets, where any user gaining entry
to a facility is often implicitly authenti-
cated to access unprotected services by
simply plugging a portable computer into
an unused network port.

In this article, I describe an approach
that uses role-based access controls
(RBACs) and Web session management
to protect against network security
breaches in the HTTP environment. The
RBAC and session management services
augment network-level security, such as
firewalls, inherent in the deployment of
any Web-based system with untrusted

interfaces. The RBACs are implemented
through the Internet Engineering Task
Force’s Lightweight Directory Access
Protocol (for IETF documents relevant
to LDAP and other Internet protocols
cited in this article, see the sidebar,
“IETF Protocol RFCs,” p. 28). Session
management is implemented through
cryptographically secured, cookie-based
ticket mechanisms.

The approach was fielded first as part
of a project to support the sales force,
agency operations, and communications
for a large insurance company. It has
been incrementally improved in subse-
quent implementations.

Security in the
HTTP Environment
Role-based access controls are not part of
the typical Web server software set. The
HTTP RFCs specify a “401:WWW-
Authenticate” server response—essential-
ly a logon challenge—for authentication
and access control.

26 JANUARY • FEBRUARY 2001 http://computer.org/internet/ 1089-7801/00/$10.00 ©2001 IEEE IEEE INTERNET COMPUTING

In
te

rn
et

 S
ec

ur
it

y

Security Realms
The notion of a security realm applies here: a typ-
ical security realm comprises a tree or subtree of
URLs for a given server. Because each realm must
map to unique URL prefixes, security realms are
mutually exclusive. When a Web client requests a
URL from a server, the server checks the URL
against its list of realms for a prefix match. For
each realm, there is a corresponding access control
list (ACL) that specifies—either explicitly or through
a set of rules—which users are allowed access to
URLs in the realm, and which users are denied.

Secure realms are useful for gross access control
to a Web site. But each realm requires authentica-
tion for access, so the user task of supplying a name
and password quickly becomes burdensome. The
need to differentiate user roles magnifies the prob-
lem: few businesses want to maintain distinct and
largely redundant Web sites and content for each
user role in their authorization base. An additional,
more subtle problem arises with the need to dynam-
ically generate content and control the visible link
set (that is, those URLs that we know in advance a
user is authorized to access, as in a search result).

Given the issues of user complexity and Web site
maintainability, secure realms are not feasible in
the implementation of an RBAC security model.
The approach described in this article shows how
to address these issues by using network authenti-
cation services—such as LDAP, Sun Microsystem’s
NIS, and Microsoft’s NT domains—together with an
RBAC model stored as LDAP objects and secured
session ticket.

Session Management for a Stateless Protocol
The problems of entity authentication, resource-
access authorization, and session management are
not unique to the HTTP environment. In custom
client-server systems, sessions are explicitly main-
tained by persistent network connections and state
information shared between client and server
applications. The request-response-disconnect
nature of HTTP precludes any shared, connection-
oriented state between client and Web server, inso-
far as that state is based on the protocol itself.

RFC 2109 describes a state management mech-
anism more generally known as a session ticket.
RFCs 2068 and 2616 specify HTTP’s basic authen-
tication mechanism, which is simply a user-ID and
password encoded in Base64 and included as part
of the HTTP request headers. From a security view-
point, Base64 is essentially cleartext. Unless trans-
port layer security (TLS, RFC 2246) or secure sock-
ets layer (SSL) encryption is used, this is not a

secure method for authentication.
RFC 2595 recently proposed starting a TLS ses-

sion to protect what would otherwise be cleartext
password authentication for three Internet standard
protocols. Following this proposal, a server would
augment its advertised capability set to include a
“start TLS” capability. A client would issue this start
command, redetermine the server’s capabilities, and
then perform the authentication steps of the pro-
tocol with the transport layer encryption protect-
ing the exchange.

The message digest authentication proposed in
RFC 2617 is a type of challenge-response authenti-
cation protocol that does not transmit any cleartext
passwords. At present, commercial server products,
such as Netscape Enterprise Server and Microsoft IIS,
do not support this protocol.

Role-Based Access Control
Role-based access control provides a rich model
for managing information and its accessors. Many
other security models can be
represented as subsets or simpli-
fications of an RBAC model.
Sandhu et al.1 discuss various
forms of RBAC. Using Sandhu’s
descriptive approach in the
insurance company project, we
implemented what is essentially
RBAC0, that is, role-based access
without hierarchical control.
However, in our implementation,
session termination is system-
enforced instead of user-elected,
and all users have a single role
(both of these are constraints under RBAC2). Fur-
thermore, the notion of sessions is limited in the
HTTP environment because of the single request-
response nature of the protocol.

Using Sandhu’s notation, RBAC0 includes:

■ U, a set of users
■ R, a set of roles
■ P, a set of permissions
■ PA, a many-to-many permission-to-role

assignment relation
■ UA, a many-to-many user-to-role assignment

relation
■ S, a function mapping a session to a set of

roles, possibly dynamically

This was the approach used to implement LDAP-
based RBAC. Sandhu notes that the permissions
are treated like uninterpreted symbols in the model

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 27

Access Control

Role-based access
control provides
a rich model for
managing
information and
its accessors.

definition. In the work described here, the symbol
interpretation service is implemented either as an
application-level service-access meditation func-
tion—which was the case with the insurance com-
pany implementation—or as an HTTP server-
request intercepts filtering function—which was the

case in subsequent implementations. (It may also
be possible to implement RBAC1 (role hierarchies)
using the object class hierarchy that is part of the
X.500 schema employed by LDAP directory
servers.)

Security Services Architecture
Figure 1 illustrates the logical architecture for the
security services in this approach.

Authentication Services
Authentication verifies a claimant’s identity. The
architecture in Figure 1 shows authentication ser-
vices as a configurable service element. In the
fielded implementation, an LDAP bind operation
with a simple password provided the back-end
authentication service with parameters obtained
from the user in an HTTP form submitted over TLS.

Figure 1 shows several other common authen-
tication services that may already exist in an
enterprise and could also be used.

For a generic HTTP client, the authentication
possibilities are limited to what can be accom-
plished with HTTP Basic Authentication or form
submission. Form submission by the HTTP client
causes the HTTP server to act as a proxy for the
client in executing one of the authentication pro-
tocols. This implies that the client trusts the HTTP
server in this proxy authentication role.

Session Management Services
The approach requires four session management
services, shown in Figure 1 and detailed below.

Time service. The session management services
related to session duration and time-out require
agreement on the time. Some authentication pro-
tocols also use time-varying sources, such as chal-
lenge-response types. The required precision of
time measurement is usually on the order of a few
minutes for session idle time-out. The network time
protocol (RFC 1305) and simple network time pro-
tocol (RFC 2030) provide close synchronization of
system clocks.

User profile service. This service provides user
attributes, particularly security roles and distin-
guished names. Other information that may be use-
ful in the applications or content-tailoring envi-
ronment may be provided, such as given name,
common name, application preferences, and so on.

Ticket issuance service. This service grants a ses-
sion ticket to an authenticated user. The session

28 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

The Requests for Comments for Internet protocols cited in this article
are available online at http://www.ietf.org/rfc/rfcxxx.txt,where xxxx refers
to the 4-digit RFC number.

For Lightweight Directory Access Protocol
RFC 1777,W.Yeong,T.Howes, and S.Kille,“Lightweight Directory Access

Protocol,” Mar. 1995.
RFC 2251, M.Wahl,T. Howes, and S. Kille,“Lightweight Directory Access

Protocol (v3),” Dec. 1997.
RFC 2252, M.Wahl et al.,“Lightweight Directory Access Protocol (v3):

Attribute Syntax Definitions,” Dec. 1997.
RFC 2253, M.Wahl, S. Kille, and T. Howes,“Lightweight Directory Access

Protocol (v3):UTF-8 String Representation of Distinguished Names,”
Dec. 1997.

RFC 2254,T.Howes “The String Representation of LDAP Search Filters,”
Dec. 1997.

RFC 2255,T. Howes,“The LDAP URL Format,” Dec. 1997.
RFC 2256, M.Wahl,“A Summary of the X.500(96) User Schema for Use

with LDAPv3,” Dec. 1997.

For Hypertext Transport Protocol
RFC 1945,T. Berners-Lee, R. Fielding, and H. Frystyk,“Hypertext Transfer

Protocol – HTTP/1.0,” May 1996.
RFC 2068, R. Fielding et al.,“Hypertext Transfer Protocol – HTTP/1.1,”

Jan. 1997.
RFC 2109, D. Kristol, and L. Montulli,“HTTP State Management Mecha-

nism,” Feb. 1997.
RFC 2616, R. Fielding et al.,“Hypertext Transfer Protocol – HTTP/1.1,”

Jan. 1999 (obsoletes RFC 2068).
RFC 2617, J. Franks et al.,“HTTP Digest Authentication,” June 1999.

For Transport Layer Security
RFC 2246,T.Dierks and C.Allen,“The TLS Protocol,Version 1,” Jan. 1999.
RFC 2595, C. Newman,“Using TLS with IMAP, POP3 and ACAP,” June

1999.

For Time Service
RFC 1305, D. Mills,“Network Time Protocol (Version 3) Specification,

Implementation and Analysis,” Mar. 1992.
RFC 2030,D.Mills,“Simple Network Time Protocol (SNTP) Version 4 for

IPv4, IPv6 and OSI,” Oct. 1996.

For Dynamic Host Configuration Protocol
RFC 2131,R.Droms,“Dynamic Host Configuration Protocol,” Mar. 1997.

IETF Protocol RFCS

ticket stores information about the Web site user
in a tamper- and spoof-proof format and utilizes
session time-out in the normally stateless HTTP
environment (for session ticket specifications, see
Bellovin2).

The session ticket based on HTTP cookies is the
only standards-based, scalable method for main-
taining state in the HTTP environment. The ticket
can be represented either as a single cookie within
which a number of values have been catenated or as
a collection of distinct cookies. In our fielded imple-
mentation, a set of related session tickets was used.
For implementation purposes, this collection is
referred to as the session ticket (in other words, it is
a set of related cookies).

The session ticket comprises a payload, consist-
ing of several distinct variables and their values:

■ User_IP: the client IP address to which the ses-
sion ticket was issued. This is used in session
ticket validation to detect source spoofing.
Note that firewalls should not be configured to
hide or remap the requestor address for this to
be of use.

■ User_ID: the username or distinguished name
(DN) that was correctly authenticated to the site.

■ Login_Expires: the session time-out and auto-
matic logout function that Web browsers do not
inherently support.

■ Login_Expires_Absolute: the stated absolute
expiration time of a session, even if it has not
expired due to idleness time-out.

■ Other attributes as required for the particular
implementation.

■ Ticket_MAC: a digital signature or message

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 29

Access Control

User profile service

Time service

Security system

Web system

Ticket issuance
service

Web browser

Application
service

Key management
service

Role-based
authorization service

Ticket validation
service

HTTP service

Challenge-response

Kerberos

X.509 certification

LDAP authBind

NT domain

NIS

Authentication
services

Authentication
protocol

LDAPS

LD
A

P

Ticket validation
service interface

Authorization
service interface

LDAP

LDAP

JVM

HTTPS

HTTPS
or

HTTP

Authorization
interface

Encrypted
communications

Cleartext
communications

Encrypted or clear,
protocol dependent

Figure 1. Security services architecture. Multiple services linked by LDAP can be used in an imple-
mentation to provide authentication, session management, and authorization.

authentication code (MAC) computed against
the catenation of the session ticket values.

The server issues the session ticket after a successful
authentication protocol execution, which in most
cases transpires over an encrypted SSL connection
between the Web client and the Web server. Once
the ticket arrives at the Web browser, it must be
secured from tampering, as shown in Figure 2. A
digital signature or Message Authentication Code
(MAC) across the session ticket makes tampering
detectable. If, for example, a user attempts to mali-
ciously modify his role, the message represented by
the session ticket will not be authentic.

The insurance company implementation used a
hash-based MAC referred to as HMAC-SHA-1-160,
as all 160 bits of the SHA-1 output are retained.
(For an extensive discussion of keyed hash MACs,
see Bellare et al.3) Alternative implementations of
the secured session ticket are possible using sym-
metric cookie encryption or public key methods for
digital signature.

The session ticket expiration time is determined
by the earlier of the Login_Expires or Login_
Expires_Absolute values in the secure session tick-
et. These values are determined at the time the ses-
sion ticket is generated by adding the system con-
figuration parameters of Session_Duration and
Session_Duration_Absolute to the current time,
obtained from the time service.

A valid session ticket is refreshed as it is used;
this involves the update of the Login_Expires and
Ticket_MAC values. The values are validated by a
server and returned to the user in response to an

HTTP request, which prevents ticket expiration
while a user is active. Users would otherwise need
to re-authenticate unnecessarily.

Figure 3 illustrates the logic for implementing
the ticket-issuance service and its interaction with
the authentication and user profile services.

Ticket validation service. After a ticket is issued,
the HTTP server must validate it as presented in the
request headers. Three checks are performed to val-
idate a session ticket transmitted from a browser
user to a server:

■ The IP host address from which the session ticket
was transmitted must match the User_IP value.

■ The Ticket_MAC value (as a cookie header) in the
request from the browser user must match the
result of the same server-side calculation per-
formed on the presented session ticket using the
MAC key (excluding the Ticket_MAC value).

■ The time provided by the time service must be
earlier than the times specified in the ticket’s
Login_Expires and Login_Expires_Absolute
values.

If a session ticket is not valid, the user is asked to
reauthenticate and thereby establish a valid session.
When a user successfully authenticates, the session
ticket transitions state to “Valid and Not Expired.”
From this state, a number of possible transitions
can be made:

■ A ticket refresh may retain the “Valid and Not
Expired” state. This is most common event.

■ If the ticket is deleted (for example, the repre-
sentative cookie file is deleted, or the browser
application execution terminated and restart-
ed), it arrives in a “No Ticket” state.

■ If the ticket is tampered with or the machine IP
address does not match the User_IP value, it
arrives in an “Invalid Ticket_MAC” state.

■ If the ticket is presented after it has expired, it
arrives in an “Expired” state.

■ A tampered and expired ticket arrives in the
“Invalid and Expired” state.

From any invalid state, a transition back to the
same state based on a failed reauthentication is
possible. If reauthentication is successful, the state
transitions back to “Valid and Not Expired.”

The User_IP may have been established by a
dynamic host configuration protocol (DHCP) ser-
vice (RFC 2131); this occurs if sessions time out or
expire in a much shorter time than a DHCP address

30 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Client IP address
(optional)

User ID or DN

Session absolute
expiration time

Session
expiration time

Ticket MAC

MAC key

Keyed hash
MAC

Session ticket elements

Additional custom
ticket payload data

Figure 2. Session ticket secured with
keyed hash message authorization code.

lease does. Session time-outs are usually in the
range of 5 to 20 minutes, while DHCP leases tend
to have durations of 24 to 72 hours (a few envi-
ronments with very short leases provide excep-
tions to this). If a DHCP lease is lost and renewed
with a different IP address while a session is active,
then the user will need to re-authenticate. (In other
words, the user will have been logged off by the
address change; this would be true for any sock-
et-based services in use as well).

The use of proxy servers raises another issue
related to User_IP. In the case of many users and
a single shared proxy, all users appear to have the
same IP address—that of the proxy. This limits the
effectiveness of User_IP in binding a session tick-
et to a particular host. In the case of many users
and an array of proxy servers with different IP
addresses, the User_IP generally will not match the
actual IP address of the rotating proxies. In a case
where you can control the proxy systems, one
solution is to activate proxy generation of the
Client_IP HTTP request header and use this value
instead of the host IP address.

Key Management Service
The keyed message authentication code stored as
the Ticket_MAC value requires the provision of
some key management services. Menezes4 dis-
cusses the complexities of cryptographic infra-
structures and methods for implementing them.
Key management services required for this
approach are:

■ secure distribution of the MAC key to all
servers requiring it, and

■ MAC key renewal or regeneration.

MAC key updates cause all currently valid session
tickets to become invalid. This forces users to re-
authenticate, which can be irksome if key updates
are frequent. In practice, a nightly key update
schedule is often adequate for typical business-
oriented—as opposed to military or diplomatic—
security policies. In a network of servers requiring
MAC key knowledge and renewal, more elaborate
key distribution methods are needed to protect the
key during transmission. The literature includes

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 31

Access Control

Present logon page to user

Ticketing
server

Verify identify claim
of user by credentials

Authentication
server

Directory server

Provide user attributes
by directory lookup

User request logon
or is redirected to logon

Client

User is authenticated
and has an active session

Obtain additional user attributes
to build ticket payload

User completes logon form:
authentication method,
userid, and credentials

Unload form and execute
authentication protocol

Return "Successful Logon"
page with response headers

Construct session ticket
(cookie) with keyed MAC

8

2

1

7

6

5

3

4

4b

SSL required
SSL not required

Figure 3.Ticket issuance service.The service implementation begins with a client request for
logon and interacts with authentication and user profile services to open an active session.

many robust key establishment, agreement, and
distribution protocols.4

Authorization Service
This service mediates user access to resources; its
primary clients are HTTP servers and other network-
based, LDAP-aware applications. When a user
requests resources, the HTTP server asks the autho-
rization service if the user is authorized for them.
The response is either true or false, and the HTTP
server or application processes the request accord-
ingly. In this way, the HTTP server acts like an
application access firewall, where filtering rules are
based on an RBAC model accessed over LDAP.

LDAP Schema Extensions
and Object Instantiations for RBAC
LDAP is defined in several IETF documents. RFC
1487 (July 1993), now obsolete, was the earliest
definition of a lightweight access protocol for
X.500 directories. RFC 1777, released in March
1995, is known as LDAPv2 and remains the current
draft standard. At the time of writing, RFCs 2251
through 2256 are proposed standards and collec-
tively constitute what is known as LDAPv3.

The LDAP RFCs describe a network protocol for
communication between directory user agents
(DUAs) and directory server agents (DSAs), sup-
ported by an underlying set of data structures
referred to as a directory. The directory data struc-

32 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

Person

organizationalPerson

inetOrgPerson

objectClass: xPerson
dn = {uid,o,c}

Object inheritanceo=ABC insurance

c=US

uid

securityRoleID

Attribute mapping
to role permissions

requires

Boolean indicates access permission for this
instance to the controlled objects in the list.

All controlled objects are required attributions
of a security role.

[TRUEIFALSE]

requires

uid
userpassword
securityrole
objectclass
dosynchronize

securityroledid,
<list of security controlled objects>:

allows cn
givenname
sn
…other attributes as required…

object

objectClass: securityRoleObject
dn = {securityRoleID,o,c}

Figure 4. LDAP schema extensions for RBAC.The extensions in the directory service
establish a mapping between users and security roles.

tures are in accordance with the
CCITT X.500 standards5 and pro-
vide a simple, object-oriented
organization. The objects are not
complex and do not have any
executable code attached to
them; they often look like simple
database rows with the exception
that attributes or columns may
be designated as required or
allowed. Objects may be desig-
nated distinct classes, the attrib-
utes of which may be inherited
by any object therein.

Using a compliant LDAP DSA
(a Netscape Directory Server in
the implementation described
here), the RBAC0 model defined previously can be
implemented by making two schema extensions.
First, the default user object is subclassed to a new
object class with at least one additional required
attribute: securityRole. At this point, if the client
has other attribution requirements, those attribut-
es are also defined for the new default user object.

Second, the object class securityRoleObject is
defined. There is one instance of securityRoleObject
for each defined role in the system. This collection
of objects defines the relation PA, as described for
RBAC0 (a many-to-many permission-to-role
assignment relation). In practice, PA may be repre-
sented as a Boolean matrix of dimensions corre-
sponding to the number of roles (rows) and per-
missions (columns) in the system. Each
securityRoleObject then corresponds to a row of the
permission matrix.

Next, users are created in the LDAP directory
using the new object class. This object class inher-
its all the usual attributes—e-mail address, fax
number, street address, first name, last name, and
so on—plus any additional new attributes the client
requires. A typical distinguished name (DN) for a
user would have the form uid=userid,o=orga-
nization,c=countryName.

After all of the information access functions are
identified, user roles are defined. An instance of
the object class securityRoleObject with an iden-
tifier that included the role name and true or false
values for each attribute that matched an infor-
mation-access function was created in the insur-
ance company implementation. Figure 4 shows the
schema extensions for the directory service. In
practice, identifying Web-based services and
developing user roles and authorizations are chal-
lenging tasks.

Domain Ticketing and
Single Web Sign-On
Because HTTP cookies contain a return domain
that may include a wild-card type of specification,
it is possible to use this session ticket scheme for
a single Web sign-on (SWSO) capability. SWSO
allows a user to authenticate once to the ticket-
issuing service and obtain a session ticket that
establishes the user’s session and authentication
throughout an entire DNS subdomain of hosts. An
HTTP cookie contains a name, a value, a path, a
domain, an expiration, and a secure-only attribute.
By designating the domain to be, for example,
*.computer.org, the cookie will be returned to any
server in the subdomain of computer.org, such as
www.computer. org, dlib.computer.org, ftp.com-
puter.org, and so on. A single session ticket there-
by provides the user’s authentication and session
management across a number of hosts related by
domain name.

Example User Interaction
The example outlined below describes how a user
sees the interaction with Web-based systems
employing this approach to security. The initial
login form shown in Figure 5 illustrates all possi-
bilities for authentication service selection and
domains for SWSO; in practice, this login form
would be simpler.

The following steps describe this hypothetical
session, illustrating the user’s view of the system’s
security aspects:

■ The user launches a Web browser and enters a
URL, such as http://dlib.computer.org.

■ Any cookies representing session tickets from
previous sessions have expired, so no cookies

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 33

Access Control

Figure 5. Initial login screen for the multiple authentication services
and domains example.

are presented in the request headers. (Expired
cookies may be present in the request, but the
user does not see this.)

■ The Web server examines the request headers
looking for a name-value pair, which serves
as the session ticket. If the session ticket is
invalid or expired, or if none is found, the
user is redirected to an authentication HTML
form, delivered over a secured SSL HTTP con-
nection from the ticket-issuing server. This
form may be delivered by the same Web serv-
er or by a different Web server dedicated to
this purpose.

■ The user fills in the authentication form, enter-
ing a user-ID and password, domain selections,
and authentication method selection, and sub-
mits the form to the ticket-issuing server.

■ The ticketing server operates as a proxy for exe-
cution of the selected authentication protocol
with an authentication server.

■ The ticketing server prepares a ticket for the
user’s session. The user ID, DN, session expi-
ration time, absolute expiration, and possibly a

client IP address form the ticket payload. A
keyed MAC value is computed against the pay-
load and appended to it; the payload and its
MAC are then delivered in the HTTP response
headers as cookies. The return domain of the
cookies corresponds to the domain selections
made earlier on the form (*.computer.org in
this case). The user is now authenticated and
has an active Web session with all Web servers
in the *.computer.org domain.

■ The user is presented with the initial navigation
screen of the Computer Society’s Digital Library.

■ Subsequent requests against any server in the
*.dlib.computer.org domain will have the ses-
sion ticket cookie values in the HTTP request
headers. All Web servers will extract that head-
er and validate it using the shared MAC key. The
user does not need to re-authenticate until the
session expires.

■ The session expires after some time, say 30 min-
utes. A valid MAC but expired ticket results in
a re-authentication as described above. Now re-
authenticated, the user continues using the Dig-
ital Library.

■ Finally, the user is done with the session, and
instead of letting it time out, she logs out
explicitly. The logout establishes a session tick-

et with the expiration time so that any re-use
of the computer’s currently running browser
will require re-authentication.

Attacks and Defenses
A comprehensive approach to security must con-
sider numerous potential attacks on network ser-
vices. Relevant issues include security policy, infor-
mation labeling, user administration, physical
security, operating system configuration and hard-
ening, network topologies for service locations, fire-
wall configuration and filtering rules, intrusion
detection, penetration testing, and more. The fol-
lowing analysis of threats is restricted to those spe-
cific to the security services identified in the service
architecture presented here.

MAC forgery. Both SHA and MD5 produce a fixed
number of bits from an arbitrary size input: SHA
produces 160 bits and MD5 produces 128 bits. The
MAC can be defeated only by a forgery. To succeed,
an attacker must find a useful hash collision—a
computationally daunting task. To guard against

this attack, the MAC key is regenerated daily, thus
limiting the time available for calculating a useful
hash collision to 24 hours. This interval may be
reduced as computer power available to attackers
increases.

Session ticket theft. The primary defenses against
session ticket theft attacks are the Login_Expires
and User_IP elements. An attacker has only until
the Login_Expires time to steal the session ticket
and move it to another machine; in practice, this
window of opportunity is usually between 5 and 20
minutes. (If the attacker were in possession of the
victim’s password, this session ticket theft attack
would be unnecessary.)

The attacker’s machine must also engage in an
IP address spoof so that it appears to have the
same network IP address as the victim’s machine.
Since both machines are active at the same time,
this routing issue poses an additional problem for
the attacker.

A successful session ticket theft requires that an
attacker read a user’s disk-based cookie file, change
the victim’s IP address or take the victim’s machine
off the network, assume the victim’s IP address on
a subnet such that the IP routing of the stolen
address will operate correctly, and finally, access

34 JANUARY • FEBRUARY 2001 http://computer.org/internet/ IEEE INTERNET COMPUTING

Feature

The approach secures an HTTP network environment in a simple way

the Web-based resources while impersonating the
victim. This is a relatively complicated attack,
which would generally require physical proximity
to the victim’s network and execution within a
short timespan.

This attack is very unlikely to succeed when
the cookies are memory-resident, that is, if they
are never written to the cookie file by the brows-
er software. This memory-only cookie treatment
by browsers is not guaranteed, however. If SSL is
used only for access to the ticket-issuance service
and the session tickets are subsequently trans-
mitted in cleartext over the network, the tickets
are vulnerable to recovery by an eavesdropper.
When the HTTP traffic is SSL-encrypted, suc-
cessful eavesdropping to steal a session ticket is
unlikely.

Tampering with the session ticket. If an attacker
tries a different approach, such as extending the
Login_Expires attribute or changing the User_IP of
the session ticket, this will be detected in a Ticket_
MAC computation mismatch. (The attacker does
not have access to the MAC key secret used in the
signature-generation algorithm, as it is protected
by a firewall and operating system security mea-
sures.) A Ticket_MAC mismatch causes the server
to immediately request re-authentication with the
correct user ID and password, and generates an
auditable event. Similarly, if an authenticated user
seeks to modify some signed attribute, this will also
be detected by a Ticket_MAC mismatch.

Accessing the ticket-issuance service. The function
that generates the session ticket is another point of
attack. Direct execution of this function would
allow an attacker to revive an expired session on a
machine that an authenticated user has left unat-
tended. This function is protected by operating sys-
tem methods, application server methods, and Web
server access controls. No unauthenticated or direct
execution or viewing of the session ticket genera-
tor is permitted.

Attacking the authentication and authorization
services. LDAP-based authentication and autho-
rization services are also vulnerable to attack. This
could involve repeated attempts to guess a user-ID
and password for an LDAP bind with simple pass-
word operation. Discovery of a user’s password
would allow an attacker to impersonate an autho-
rized user. An attacker might also discover a sys-
tem administration account, and thereby be able to
change security role definitions. Further, a user

may seek to modify his security role attribute to
gain greater access to resources.

Conclusions
The approach described here for securing an HTTP
network environment is simple and effective in a
practical sense for many applications. Since the
original implementation for a large insurance
company, the approach has been incrementally
improved in subsequent field implementations,
and its effectiveness has been demonstrated in
extensive evaluations, analyses, code walk-
throughs, and penetration testing.

Acknowledgments
I would like to thank the project team members for their con-

tributions: Ron Raymond, Norbert Nowicki, Eric Bazerghi,

Dean Miller, Walter Kuketz, Pete McNair, Heather LeJeune, and

Rob Bell.

References
1. R.S. Sandhu and E.J. Coyne, “Role-Based Access Control

Models,” Computer, vol. 29, no. 2, Feb. 1996, pp. 38-47.
2. S. Bellovin, “Security Problems in the TCP/IP Protocol

Suite,” Computer Communication Review, vol. 19, no. 2,
Apr. 1989, pp. 32-48.

3. M. Bellare, R. Canetti, and H. Krawczyk, “Keyed Hash
Functions and Message Authentication,” Proc. Crypto96,
LNCS 1109, pp. 1-15; available online at http://www.
research.ibm.com/security/keyed-md5.html.

4. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone, Hand-
book of Applied Cryptography, CRC Press, Fla., 1997.

5. CCITT, “The Directory: Overview of Concepts, Models and
Service,” CCITT Recommendation X.500, 1988.

Kurt Gutzmann is chief architect for financial services with

Nervewire, a business-to-business applications consultan-

cy. At the time the work reported in this article was per-

formed, he was a consultant with Computer Science Cor-

poration. Since 1992, his research interests have focused on

the Internet, specifically in the areas of security, perfor-

mance engineering, and distributed systems design. Gutz-

mann graduated with distinction from Virginia Tech, where

he earned a B.S. and M.S. in industrial engineering and

operations research.

Readers may contact the author via e-mail at kgutzmann@

nervewire.com.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2001 35

Access Control

